Motor krank milinden gelen dönüş hareketi, kavrama-debriyaj sisteminden şanzımanın giriş miline aktarılır, hız ve tork şanzıman dişlileri tarafından değiştirilerek, diferansiyele aktarılır. Vites kutusu içerisinde bulunan farklı çaplardaki dişliler arasında oluşan tork-hız farkları sayesinde vites kademeleri oluşur. Her vites kademesinin dişli oranları, aracın çekiş kuvveti (tork) ve hızlanmasını belirleyici rol oynar. Son vitesin dişli oranı aracın maksimum hızını belirler. Öte yandan daha fazla (6,7) vites kademesi yine maksimum hızı arttırırken, yakıt ekonomisi sağlar.
Vites değişimleri; vites kolu hareketinin çelik teller veya çubuk miller vasıtasıyla, vites kutusunun kumanda mekanizmasına iletilmesi (vites değişim hareketi), bu hareketin kumanda mekanizması tarafından vites değiştirme çubukları ve çatallarıyla senkromeç manşonlarını kaydırması ile meydana gelir.
Vites kolu; sürücünün vites değiştirmesini sağlar.
Vites kolu bağlantı teli-milleri: Vites kolu hareketini, vites kutusundaki değiştirme mekanizmasına iletir. Yeni nesil araçlar daha çok çelik halat teller kullanılır, böylece titreşim önlenir, konfor artar.
Vites Değiştirme Mekanizması: Vites kolundan gelen vites değiştirme hareketi, burada ilgili vitesin değiştirme çubuklarının kumanda edilmesi ve değiştirme çubuklarının bağlı olduğu değiştirme çatallarının ileri-geri hareket etmesini sağlar. Böylece çatallar senkromeç manşonlarını kaydırarak ilgili vitese geçişi veya vitesten çıkmayı sağlarlar. Yine geri vites seçimi de bu şekilde gerçekleşir.
Klasik arkadan çekişli 4 vitesli bir şanzımanın vites dişli durumları, hareketin akışı, dişli ve senkromeç pozisyonlarıyla beraber çalışma mekanizması aşağıda anlatılacaktır.
Vites Dişli Konumları ve Güç Akışı
Boş Vites Konumu:
Motordan gelen hareket prizdirekt miline, buradan da grup mili dişlilerine geçer. Manşonlar herhangi bir dişli ile kavraşmadığından, hareket vites kutusundan dışarı çıkmaz. Hareket, prizdirekt mili daimi iştirak dişlisinden (bu aynı zamanda 4. vites dişlisidir), grup mili daimi iştirak dişlisine geçer. Dişliler vites durumunda olamadığından, çıkış milindeki dişliler boşta döner.
1.Vites Konumu:
Hareket prizdirekt miline –> Prizdirekt mili daimi iştirak dişlisinden –> grup mili daimi iştirak dişlisine geçer. Grupmili ve üzerindeki dişliler tek parça halindedir ve gelen hareketle bu mil ve üzerindeki dişliler döner. Hareket, grup milinden, çıkış milinde bulunan 1. vites dişlisine aktarılır, 1. vites dişlisindeki hareket senkromeçteki manşonun kavraşmasıyla çıkış miline aktarılır.
2.Vites Konumu:
Bu durumda manşon ikinci vites dişlisi ile kavraşık durumdadır. Motordan gelen hareket, prizdirekt milinden daimi iştirak dişlisine ve buradan da grup mili dişlisine geçer. Manşon, ikinci vites dişlisi ile kavraşık durumda olduğu için, hareket, grup mili ikinci vites dişlisinden çıkış mili ikinci vites dişlisine geçer. Buradan da hareket, çıkış mili üzerinden geçerek vites kutusundan çıkar.
3.Vites Konumu:
Bu durumda manşon üçüncü vites dişlisi ile kavraşık (geçmiş) durumdadır.
Manşon, üçüncü vites dişlisi ile kavraşık durumda olduğu için, hareket grup mili üçüncü vites dişlisinden çıkış mili üçüncü vites dişlisine geçer. Buradan da hareket çıkış mili üzerinden geçerek vites kutusundan çıkar.
4.Vites Konumu:
Motordan gelen hareket, prizdirekt miline, oradan da prizdirekt mili daimi iştirak dişlisine (4. vites dişlisine) geçer. Bu durumda, manşon prizdirekt mili dördüncü vites dişlisi ile kavraşık olduğundan gelen hareket prizdirekt milinden direkt geçer. NOT: Giriş mili (prizdirekt mili) ile Çıkış Mili, iki ayrı mildir, bakıldığında tek bir mil gibi görünse de, çıkış mili giriş milinin içine yataklandırılmıştır, vites 4 e alınmadıkça, yani senkromeç bu iki mili birleştirip kilitlemedikçe, hareket akışı olmaz.
Geri Vites Konumu (R):
Motordan gelen hareket kavrama ve prizdirek miline gelir. Burdan, prizdirek mili daimi iştirak dişlisine –> buradan da grup mili daimi iştirak dişlisine hareket geçer. Senkromeçsiz geri vites mekanizması olan bu sistemde, geri vitese geçilmesi için, avare dişli kaydırılarak, grup mili ile çıkış mili geri vites dişlileri arasına geçer ve bu iki dişliyi birbirine bağlar.
Hareket, grup mili geri vites dişlisinden, geri vites dişlisine (avare dişlisine), buradan da çıkış mili geri vites dişlisine aktarılır. Avare dişlinin kullanılma sebebi, dönüş hareketinin yönün tersine çevirmesidir, böylece araç geri geri gidebilir.
Avare dişlinin tork ve hız değişimine bir etkisi yoktur, hareketi aynen fakat ters yönde iletir. Yeni nesil şanzımanlarda geri vites mekanizması senkromeçli tipte ve dişli yapısı helisel ve daimi olarak dişliler geçişmiş halde çalışır haldedir (yukarıdaki 6 vitesli şanzıman görseline bakınız).
Otomatik Şanzıman İçerisinde Bulunan Parçalar;
Tribün (Tork konverter)
Servo
Hidrolik sistem
Vites
Yağ pompası kademeleri
Diferansiyel
Solenoid (selenoid)
Planet dişli sistemi
Otomatik şanzıman beyinleri ( Hidrolik ya da Elektronik)
Saclar ve balata takımları
Sübap
Soğutucu ve şanzıman yağı
gibi temel parçalar bulunur..
Tork konverter, otomatik vitese sahip arabalarda kullanılan bir sistemdir. Çünkü düz vitesli arabalarda vites değişebilmeniz için öncelikle debriyaj pedalına basmanız ve bu sayede motoru boşa almanız gerekir. Bu işlemin sonunda vitesi değiştirirsiniz. Oysa otomatik vitesli arabalarda, debriyaj sistemi yerine tork konverter kullanılır.
Türk Dil Kurumu’nda (TDK) “Bir hareketi bir mekanizmaya aktaran veya makinelerde hareketin hızını düzgün tutmaya yarayan tekerlek” olarak tanımlanan Volan kelimesi, motorda gördüğü görev itibariyle her iki tanımı da fazlasıyla karşılamaktadır.
Bir planet redüktöründe, bir çevre dişlisine eşit şekilde yerleştirilmiş pinyon dişliler, içe ve dışa doğru dişleri bulunan bir çarkın arasında eşmerkezli bir yörüngede dönerler. Pinyon dişlilerin sabit çevrenin etrafında dönmesi, güneş sistemindeki gezegenlerin yörüngesini andırır. Bu nedenle uydu dişlilerine planet çark redüktörü ya da planet redüktörü adları da verilir.
Difransiyel her iki aks ile aynı zamanda çalışırken aksların farklı hızda dönmelerini sağlayarak virajlarda stabilite sağlar. Otomobil virajı alırken, dairesel yol izler ve bir yay çizer. İşte bu yayı çizerken dışta kalan tekerlekler çapı daha geniş bir daire yayı çizeceğinden yani daha fazla mesafe katedeceğinden içtekilerden daha hızlı dönmelidir. Aşağıdaki şekilde de göreceğiniz bu durumu sağlayan diferansiyeldir. Difransiyel her iki tekerleğin arasında yer alır ve yarım bir dişli şaft ile tekerlere bağlanır. Dört tekerlekten çekişli araçlarda ise her çift teker için ayrı ayrı iki tane difransiyelleri vardır.
İçinden yağ geçen elektronik subap. Solenoidler belli viteslerde yağ kanallarını açar ve kapatırlar. uzun süre yağ değişmemesi veya eskimiş yağın kutuda kalması solenoidleri tıkayabilir ve bozabilir. Solenoidler sürekli yağın içindedir. Bu yüzden sökülmeden önce yağ boşaltılır.
Vites yükseltme ve düşürmenin direksiyondaki kulakçıklarla (paddle shift) (+ -) veya vites kolunun ileri-geri hareketiyle yapılabildiği otomatik şanzımanlara tiptronik şanzıman denir. Triptronik şanzıman yarı otomatik de olabilir tam otomatik de olabilir. Tiptronik sistemi ilk Porsche geliştirmiştir.
1940’lı yıllardan günümüze kadar gelen otomatik vites teknolojisi geleneksel tip otomatik şanzımanın temelini oluşturmaktadır. Geleneksel kelimesinin kullanılması bu nedenledir ancak eski veya geri teknoloji olmasını ifade etmemektedir. Diğer otomatik şanzıman tiplerine göre en büyük farkı “Tork Konvertörü” isminde hidrolik direnç mantığıyla çalışan ve motorun dönüşünü şanzımana aktaran bir debriyaj mekanizmasının bulunmasıdır.
Diğer taraftan geleneksel otomatik şanzımanlarda planet dişli mekanizması denilen farklı bir dişli dizilimi vardır. İngilizce “Planet” kelimesi Türkçe’de “Gezegen” anlamına gelmektedir. Bu tip dişli grubunda aynen gezegen sisteminin güneş etrafında dizilimine benzeyen bir sistem mevcuttur. Hatta merkezde bulunan dişliye güneş dişlisi de denir. Bu dizilim nedeniyle dilimize bu şekilde geçmiştir. Manuel şanzımanlar da dahil bu tip bir dişli dizilime başka hiçbir şanzıman tipi sahip değildir.
Ayırıntılı Bilgi için bakınız… CVT ŞANZIMAN NASIL ÇALIŞIR
Döner haldeki bir parçanın hareketini aynı eksen üzerinde bulunan diğer bir parçaya iletmek veya iletilmekte olan bu hareketi istendiği zaman durdurmak amacıyla kullanılan tertibata kavrama adı verilir. Konumuz olan ve motorlu taşıtlarda kullanılan kavramalar krank mili ekseninde olmak üzere motorla vites kutusu arasına bağlanmış olup, motordan vites kutusuna hareket iletimini sağlar ve istendiği zaman, motor çalışmasına devam ettiği halde, bu hareket iletimini durdurur.
Kavramanın Görevleri
Motor çalışır durumda iken kavrama kavranmış olursa hareket motordan vites kutusuna iletilir. Aynı anda, vites kutusu vites durumunda ise motorun hareketi tekerleklere kadar iletilir ve taşıt harekete geçer. Kavrama ayrılmış durumda ( hareket iletmez durumda ) olduğu zaman motorun hareketi vites kutusuna geçemez ve vites kutusu boş durumda olmasa dahi motorun hareketi vites kutusuna iletilmediğinden taşıtın hareketi mümkün olmaz. O halde, vites kutusu vites durumunda olmasına rağmen, taşıt durur halde iken kavrama motorun çalışmasına imkan verir.
Kavramanın geçici olarak motorla vites kutusu arasındaki bağlantıyı kesmesinin, vites kutusunda hız durumlarının değiştirilmesindeki önemi büyüktür. Güç iletimi durdurulmadan vites kutusu bir hız durumundan diğer bir hız durumuna geçirilmek istenseydi, güç iletmekte olan iki dişli basınç altında olacağından bunların ayrılması oldukça güç olurdu. Vites kutusu boş duruma geldikten sonra, güç iletimi devam ederken istenen hız durumuna ait iki dişliyi kavrattırmaya çalışmak da dişlilerinde hasara uğramasına sebep olurdu. Çünkü büyük bir ihtimalle döndüren ve döndürülen dişlilerin çevre hızları birbirinden farklıdır. Bu durumdaki dişlilerin kavrattırılmaya teşebbüs edilmesiyle, dişlerin birbirine çarparak kırılmalarına sebep olunur.
Kavrama hareket iletmez duruma getirilirse dişler üzerisindeki basınç kalkacağından dişlerin birbirinden ayrılması kolay olur ve vites boş duruma gelince döndüren dişli serbest hale geleceğinden diğer bir hız durumu için kavrattırılacak dişlilerin çevre hızlarının denkleştirilmesi mümkün olur. Bunun sonucu olarak dişliler kolayca kavrattırılır. Bundan sonra kavrama tekrar kavramış duruma getirilerek motorun hareketi vites kutusu aracılığıyla bir başka oranda tekerleklere iletilir.
Diğer taraftan bir taşıtın durur halden belirli bir hızdaki hareket haline hemen geçişi imkansızdır veya büyük bir sarsıntıya sebep olunur. Bunun gibi düşük bir hızdan daha yüksek bir hıza veya yüksek bir hızdan daha düşük bir hıza aniden geçişte de büyük bir sarsıntı meydana gelir ve hareketi ileten parçalar aşırı derecede zorlanarak hasara uğrarlar. Kavrama ilk hareket esnasında motorun hareketini vites kutusuna, dolayısıyla tekerleklere, tedrici olarak iletir ve taşıtın harekete geçişi sarsıntısız olur. Aynı şekilde vites durumunun her değiştirilmesinden sonra motorla vites kutusunu tedricen bağlanmasını sağlayarak, taşıtın ani hızlanmasını veya ani yavaşlamasını, dolayısıyla sarsıntıları önleyerek hareket ileten parçaları hasara uğratmaktan korumuş olur ve taşıtta bulunanları oldukça rahatsız edici bir durum ortadan kaldırılır. Bunlardan başka herhangi bir sebeple de olsa motorla vites kutusu arasındaki bağlantının kesilmesi gerekebilir. Örneğin; bir arıza nedeniyle vites kutusu boş duruma getirilemeyebilir. Bu durumda taşıtın tamir yerine kadar çekilmesi sırasında tekerleklerin hareketinin motora iletilmemesi kavramanın ayırmasıyla mümkün olur.
Bu açıklamalardan sonra kavramanın görevi şu şekilde özetlenebilir:
• İlk hareket sırasında motorun hareketini tekerleklere tedricen ileterek taşıtın sarsıntısız olarak harekete geçişini sağlamak.
• Taşıt hareket halinde iken vites durumlarını değiştirmek için motordan vites kutusuna hareket iletimini geçici olarak kesmek.
• Gerekli hallerde motorla güç aktarma organlarının bağlantısını kesmek.
Kavramada Aranan Özellikler
• Yukarda açıklandığı gibi, kavramanın esas görevi motorun hareketini vites kutusuna tedrici olarak iletmektir. Fakat modern bir kavramada bu görevin yanında aşağıdaki özelliklerin bulunması istenir;
• Vites durumlarının kolay ve sessiz olarak değiştirilebilmesi için kavrama diskinin atalet momenti küçük olmalıdır. Bunun içinde diskin hafif olması gerekir. Çok büyük disklerde kavrama pedalına basılınca disk de özel şekilde frenlenerek vitese geçme işlemi sessiz hale getirilir.
• Krank milindeki burulma titreşimlerini vites kutusuna iletmemelidir.
• Serbest duruma geçmesi için kavrama pedalına tatbik edilmesi gereken kuvvet az olmalıdır.
• Bakımı kolay olmalıdır.
• Ucuza mal olmalıdır.
Kendi içerisinde bir kinematiğe sahip olan planet dişlisi otomatik şanzımanın en çok tercih edilen parçalarından birisi olarak karşımıza çıkar. Güneş dişlilerinin verimliliğinin yükselmesine sağlarken çevre dişlisinin içerisinde yer alır. Planet dişlisi güneş dişlisinin alanındaki yörüngede dönme işlemini yapar ve yüksek devirleri düşük devirlere düşürür.
Bu sistem çevresinde hareket ettiği için ismini de buradan almaktadır. Düz planet dişlisi, helis planet dişlisi ve iş dişli olarak da isimlendirmeleri vardır. Bu dişlinin çok sayıda faydası ve işlevi vardır bunlardan birisi de yüksek tork kazanımı sağlamasıdır. Yapısı bakımından kompak ve küçük bir yapıya sahiptir. Planet dişlilerinin işleyişi ve verimliliği çok yüksektir uzun yıllar sorunsuz bir şekilde çalışma prensibine sahiptir. Planet dişli sistemi içeriden düzenleyici bir özelliği sahiptir bu sayede oluşan yükün eşit bir şekilde dağılmasını sağlar. Araç ve motor üzerinde oluşan yük belli bir seviye dişlilere de yansımaktadır bu yük eşit bir şekilde dağılmadığı zaman dişliler kısa sürede dağılır ve sorunlar çıkmaya başlar. Planet dişlisi de bu sistem içerisinde denge rolünü üstenir ortaya çıkan yükü dağıtarak dişliler uzun süre ve sorunsuz bir şekilde çalışmasını sağlar. Bu dişliler çok uzun yıllardır kullanılmak ve çeşitli amaçlara hizmet etmektedir. Dişli takımları çok sayıda sistem üzerinde kullanılır ve ortaya belli bir güç çıkar. Ortaya çıkan güç de planet dişlisi sayesinde otomatik transmisyonlarda kullanılır. Planet dişli sistemi sabit bir çevre dişlisi etrafında dönen pinyon dişlilerden aktarım yapabilen ve aracın düşük devrini ve yüksek tork elde etmesini sağlayan çok önemli bir sistemdir.
Bu dişliler çok hassas bir görev üstelendikleri için imalat sürecine çok dikkat edilmelidir. Yüksek teknolojiyle ve dünya standartlarında üretim yapılması çok önemlidir. Dişli sisteminden gelen sesler ve sorunlar varsa buna hemen müdahale edilmelidir. Gerekli bakımlar yapılmalı sistemde büyük sorunlar varsa bu dişlilerin vakit kaybetmeden değiştirilmesi gerekmektedir. Kullanım alanlarında göre çok çeşitli dişliler mevcuttur.
Planet dişlilerinin avantajları:
Tork konverterinde, tıpkı pervaneleri anımsatan kapaklar bulunur. Bu kapakların ortasına da, onlardan daha küçük boyutta başka bir pervane daha yerleştirilmiştir. Bu küçük pervaneye Stator adı verilir.
Şekil – Tork Konverter Parçaları
Tork Konverter (Kilitsiz) 4 kısımdan oluşur. Kapak, Türbin, Stator, Impeller(Pervane-Pompa)
1- Kapak; Kapak impeller gövdesi ile kaynaklanarak birleştirilir ve tork konvertörünün gövdesini tamamlayarak kapalı bir hazne haline getirir. Diğer taraftan motor volanına monte edilerek tork konvertörünün motordan hareket almasını sağlar. Impeller ile kapak kaynak ile birleştirilir ve motor volanı döndükçe kapak ve dolayısı ile tork konvertörü de döner.
2- Türbin; Şanzımana bağlı olan türbin için vantilatör örneğindeki fişe takılı olmadan dönebilen pervane de diyebiliriz. Bu parça hareketini impellerın yarattığı şanzıman yağı sirkülasyonu sayesinde gerçekleştirir ve hareketini şanzımana aktarır. Sonuç olarak motor ve dolayısı ile de impeller dönmezse türbin de dönmez.
3- Stator; Stator için tork konvertörünü tork konvertörü yapan beyni de denilebilir. Statorün yönlü kanatları sistem içindeki şanzıman yağının akışını dıştan içe doğru değiştirerek verimi yükseltir ve ana amacı torku katlamaktır. Stator olmasaydı motor torku belli bir süre 2-2.5 kata kadar daha yüksek bir şekilde şanzımana aktarılamazdı ve tork konvertörü yerine karşımızda aldığı hareketi doğrudan aktaran hidrolik bir kaplin olurdu. Yani tork konvertörü içindeki konverter ifadesini sağlayan parça statordür ve türbin döndükçe stator de tek taraflı olarak döner.
4- Impeller; Pervane. Bu parçada dış kapak içinde sabitlenmiş ince kanatçıklı bir pervane bulunur tork konvertörü kapağıyla beraber motor döndükçe sürekli döner. Tork konvertörünün yaklaşık yarısını bu parça oluşturur. Motordan aldığı hareket ile sürekli dönen impeller sayesinde tork konvertörünün içindeki şanzıman yağı hareket halindedir. Bu parçayı fişe takılı vantilatör olarak kafamızda canlandırabiliriz. Nasıl ki fişe takılı vantilatör havayı hareketlendiriyorsa impeller da şanzıman yağını hareketlendirir.
Kavrama Kilidi (Lock-Up Clutch); Düşük hızlarda impeller dönüş hızını türbine daha düşük kayıplarla (%4-%5) aktarsa da yüksek motor hızlarında kayıplar ve şanzıman yağında sıcaklık artmaya başlar. Aktarım kaybı olması ve yüksek sıcaklık da motorun ürettiği torkun şanzımana ve dolayısı ile tekerleklere eksik olarak gitmesi anlamına gelmektedir. İşte bu kaybı engelleyebilmek için kilit mekanizması impeller ve türbini kitleyerek aynı hız ile şanzıman yağından bağımsız olarak dönmesini sağlar. Kısacası tork konvetörü mekanik bir kaplin olarak çalışmaya başlar ve şanzıman yağının hareket aktarma etkisi kalmaz. Bu sayede hem aktarma kayıpları hem de yağ sıcaklığının artması engellenir.
Motorun ilk çalıştırılmasında hareketi aktarmak;
İri bir gövdeye ve küçük dişlere sahip olan ve büyük bir dişli görünümündeki bu parça, motorun ve şanzımanın yapısına göre 30-40cm çapında olan dişli bir kasnaktır. Marş motoruna bağlıdır ve araç ilk çalıştırıldığı zaman marş motoru volanı döndürerek ilk çalıştırmaya katkıda bulunur. Yani içten yanmalı motorun ilk hareketi, aküden beslenen marş motoru tarafından elektrikli olarak elde edilen hareketin Volan üzerinden mekanik olarak krank miline aktarılmasıyla gerçekleşir.
Krank mili, Volan göbeğine-merkezine bağlıdır. Yani Volan döndüğü an krank mili döner, pistonlar da yukarı aşağı doğru Volanın zorlamasıyla hareket etmeye başlar. Ancak hemen sonrasında, ateşleme ve yakıt sistemi de devreye girdiği için motor kendi başına çalışmaya başlar ve Volan kasnağının ilk görevi olan marş motorunun hareketini motora aktarma işlemi tamamlanmış olur.
Şekil – Volan Dişlisi
Motorun hareketini şanzımana aktarmak; Volanın krank miline sabit bir şekilde bağlı olduğunu ilk maddede belirtmiştik. Bu da ikisinin de beraber hareket ettiği anlamına geliyor. Motorun kendi işleyişi sonucunda çalışması ile de pistonlar krank milini çevirmeye başlar ve dolayısı ile krank miline bağlı Volan da dönmeye başlar. Dış kısmı ise doğrudan debriyaj balatasına bakmaktadır. İşte bu dış yüzey pütürlü-zımparamsı bir yapıya sahiptir ve manuel şanzımanlı araçlarda sürücü debriyajdan ayağını çektiği anda balata ile Volanın iç kısmı pütürlü yapıya sahip olmaları sayesinde yapışırcasına birleşir.
Hem Volanın şanzımana bakan kısmının pütürlü yapıya sahip olması hem de debriyaj balatasının bu tip bir birleşmeye uygun şekilde düz ve pütürlü olmasının nedeni de tam olarak budur. Volan döndüğü sırada debriyaj balatası hareketsizdir ancak yüzeyler birbirlerine temas eder etmez bir nevi kitlenir ve Volanın dönüş hareketi debriyaj balatası yardımıyla şanzımana, ardından da tekerleklere aktarılır.